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The initial boundary-layer flow past a translating and spinning
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Abstract. The boundary-layer fiow on an impulsively started translating and spinning rotational symmetric body is
considered. The stream function and the swirl component of the velocity are expanded in series in powers of time.
Leading and first order solutions are obtained analytically and the second order solutions are determined
numerically. The results are applied to a translating and spinning sphere and the rotation is found to reduce the
friction drag and facilitate flow separation.

1. Introduction

Three-dimensional boundary-layer flows have a variety of applications in engineering such as
swept wing, corner fairings and spinning projectiles. The absence of known three-dimension-
al potential-flow solutions prevents the three-dimensional boundary-layer analysis in most
cases. Three-dimensional boundary-layer separation also shows significant differences from
that of the two-dimensional case.

A rotational symmetric body presents a preliminary case for general three-dimensional
boundary layers. An axisymmetric boundary-layer flow over a rotational symmetric body set
into axial motion impulsively was first investigated by Boltze [1]. Boltze expanded the stream
function in series in powers of time and obtained numerical solutions for the terms in powers
up to and including +*. Dennis and Walker [2] improved the accuracy of the Boltze solution for
the boundary-layer flow over an impulsively started sphere and obtained numerical solutions
up to and including terms of O(t’). Dennis and Walker [3] also carried out numerical
solutions of the unsteady flow past an impulsively started sphere for both finite Reynolds
numbers and the boundary-layer case, and extended the results to larger values of time.

The flow is further complicated in the case of moving walls. The number of solutions to
three-dimensional boundary-layer flows including the swirl component of velocity are very
few. Flow about a spinning body of revolution was investigated by Illingworth [4], Chu and
Tifford (5], Schlichting [6] and Hoskin [7]. These are all momentum-integral approximations
and of uncertain accuracy. The boundary-layer flow on a rotating sphere in a fluid at rest
shows different characteristics near the poles and near the equator as discussed by Howarth
[8], Sawatzki [9] and Dumarque et al. [10]. Measurements of Luthander and Rydberg [11]
and the study of Hoskin [7] show that there is a marked influence of rotation on drag and
separation on a spinning sphere in an axial stream.

The unsteady boundary-layer flow past an impulsively started translating and spinning
rotational symmetric body of general shape is considered in the present paper. Initial stages
of the phenomenon is investigated by expanding the stream function and the swirl velocity in
series in powers of time. The effects of the body shape and the rotation rate are identified.
Solutions up to and including terms of O(t) are obtained analytically. The terms of O(¢*) are
determined numerically. The results are applied to a translating and spinning sphere.
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2. Basic equations

Curvilinear coordinates (x*, y*, ®) are used in the formulation of the problem. Geometry
and the coordinate system are illustrated in Fig. 1. Here x* is the dimensional coordinate
measured parallel to the surface from the nose of the body, y* is dimensional normal
coordinate to the surface and O is the circumferential angle. The dimensional local surface
radius measured from the symmetry axis is denoted by r*(x*). The body is assumed to be set
into motion impulsively with a constant axial velocity U, and angular velocity Q. Let u*, v*
and w* be the dimensional velocity components in the x*, y* and @ directions respectively
and t* be the dimensional time measured from the impulsive start.
Dimensionless variables used in the analysis are defined as

_ﬂ A _rr _ Uy
x—La y_L, r_La L= L > (21)
u* v* w* QL
u=—, V=, W= — w=—, 2.2
U(] UO UO UO ( )

where L is the characteristic length of the motion.
The boundary-layer equations given by Mangler [12] are the continuity

2.3
dx ay 0, (2.3)
X momentum
u ou ou w dr dU 1 o’u
—4tu—Fv——— ——= L4 — — 2.4
ar  H dx v ay r dx ¢ dx Re ayz’ (24)

dw ow  ow uw dr 13w 2.5)
ot "ax " Vay " r dr Re ay*’ :

where U, is the axial boundary layer edge velocity and Re = U,L/v is the Reynolds number,
v being the kinematic viscosity of the fluid. Boundary conditions to be satisfied are

Fig. 1. Geometry and the coordinate system.
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u(x,0,0)=0, v(x,0,6)=0, w(x,0,8)= wr, (2.6)

lim u(x, y,0)=0,  lim w(x, y,0)=0. Q2.7)

A stream function is defined according to

ay 9y

ru = a—y , r=--"-. (2.8)
Boundary layer variables used by Ece et al. [13] are adapted and given by
y=Kn, Y =KV, K=2Vit/Re. (2.9)

This transformation magnifies the thin boundary layer and removes the initial singularity
associated with the impulsive start of the motion. The functions F(x, n, t) and G(x, n, ) are
defined as follows:

v=rUF, w=owrG. (2.10)

It may be shown that

., oF B [(1 dr dUe) g]
u=U,—, wv= Pl ol Ll el B (2.11)

The continuity is satisfied and the momentum equations are written as

OF 3°F { 3°F L aF( oF o’F )
— +2n— = —w' =G -U +—={U —+
o e T M 0 U O U g Ve T i

9°F [(r ) aF]}

~-—l|l=U +uvU: — :

ot I\ Ut U JF+U =1 (2.12)
I°G G {aG aF( r aG) 4G [(r ) aF]}
—t2n—=4—+U, —|2=G+—)-— ||~ ; —_
an’ 2n an o U on 2 r ¢ dx on L\r Ut U )F+ U, ox 1)’

(2.13)
The boundary conditions reduce to

aF
F(x,0,1)=0, T o= 0, G(x,0,0H)=1, (2.14)
. oF
lim o 1, lim G(x,n,1)=0. (2.15)

3. Time series solution

The initial stages of the motion may be investigated by expanding the functions F(x, n, )
and G(x, n, f) in powers of time as

F(x,n,t)= Fy(n) + tF,(x, n) + CF,(x,n) + -+ -, (3.1)
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G(x, n, t) = Gy(n) + (G (x, n) + £G,(x, n) + - - - . (3.2)

Substitution of Eqgs (3.1) and (3.2) into Eqs (2.12) and (2.13) yields the leading order
equations as

F{+2nF;=0, (3.3)

Gi+2nG,=0, (3.4)
with the boundary conditions

Fy(0)=0, Fy(0)=0, G(hH=1, (3.5)

lim Fo(n)=1, lim Gy(n)=0. (3.6)
Solutions of Eqgs (3.3) and (3.4) satisfying the boundary conditions (3.5) and (3.6) are

Fy(n) = nerf(n) + Vl—; € -1, (3.7)

Gy(n)=1-cerf(n). (3.8)

The O(¢) terms define the first order equations and the form of the momentum equations
suggests that the functions F,(x, n) and G,(x, n) must be of the form
, r 2 rr
Fi(x,n)=UF(n) + N UF(n)+o U Fi5(n), (3.9)

rI
G,(x,n)=U,G,,(n)+ - U,G,(n). (3.10)

The functions F,(n) (i = 1,2, 3) and G,,(n) (j = 1, 2) satisfy the following ordinary differen-
tial equations

F +2nF} —~4F, =4F) — F,F;~1), (3.11)
F), +2nF, —4F,, = —4F,F, (3.12)
FY,+2nF|,—4F,, = -4G; , (3.13)
G, +2nG}, —4G,, = —4F,G}, (3.14)
G, +2nG, - 4G, =4(2F,G, - F,G}), (3.15)

and are subject to the boundary conditions
F (0)=0, F,(0)=0, lim Fi,(n)=0; i=1,2,3, "~ (3.16)

G,;(0)=0, lim G (m=0; j=1,2. (3.17)
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Solutions of these equations are

F,,(n)= —<i + 3) p(n) — o e erf(n)

- % n erf(n) — 3\2/_ erf(n) + \fﬁ erf(V2n), (3.18)
Fam = (52 ~1) p() + g(n L e ert(n)

- % nerf’(n) — 3\2/_ erf(n) + \jﬁ erf(V2n), (3.19)

Fo(n) = (— - 6) (n) + 2q(n) - % Hn) + n— z[n exf(n) + = (™" - 1)]

e erf(n) — erf(V2n) (3.20)

2 4
+
3V 3V2m
16 1 .
G (n)={1- 3. f(n) — g(n) + TEne erf(n)
#(3 e n)etm e g e (3.21)
2 )¢ xS '

G,,(n) = (—2 - 3) f(n) + 3g(n) — % ne™" erf(n) — 2 erf(n)

+ (% - 3n2) erfX(n) — % e 4 3177 e, (3.22)

where
p(n) = % P - % [n erf(n) + — ! (n +1)e™" — %] + Zl; n(1 - erf(n)), (3.23)
g(n) = % 34 é [n erf(n) + —= (0" + 1) " ~ \—15;] + Zl; n(1 + erf(n)) , (3.24)
r(n) = % n® erfi(n) + —\17 n*e™" erf(n) + zlw ne (3.25)
fln) = % (n — nerf(n) — % e) + % (1-erf(n)), (3.26)
g(n) = ! n(n + nerf(n) + \/1— - z) + % (1 + erf(n)) . (3.27)

Balancing the O(t*) terms in Egs (2.12) and (2.13) determines the second order
equations. The form of these equations suggests that the functions F,(x, n) and G,(x, n)
must be of the form

! I3

Fy(e, m) = UPFy () + UU () + UL = Fyg() + (-

U\’
) B+ U

+w [r’2F26(n) + rr"Fy(n) + ——

< Fu() . (3.29)

(’



420 M. Cem Ece

"

, ' rrU 2
Gy(x, n)= Ue2621(”) + U U.Gy,(n)+ U U, r? Gys(n) + (_r_e) Gyu(n) + r? Uszs(”)

+ wz[ r?Giq(n) + rr"Gﬂ(n)] . (3.29)

The functions F,,(n) (i =1 —8) and G,,(n) (j =1 —7) satisfy the following ordinary differen-
tial equations

FY +2nF. —8F, =4Q2F,F. — F.F,, — F,Fl,), (3.30)
F! +2nF, —8F,, =4(F,F. — F\F,)), (3.31)
F" +2nF", —8F), =4(3F\F., — F'F, — 2F.F,, - F,F", — F,F},), (3.32)
Fj4+2nF; —8F, =4(—FiF |, — F;FY,), (3.33)
Fr +2nFl —8F. = A(F\F., - FiF,,) , (3.34)
F! +2nF —8F. = A(~2G,G,, - 2F\F 5 + F}F|, — F,F.), (3.35)
F! +2nF. —8F., =4(F,F.,— FiF,,), (3.36)
Fl+2nF} — 8F 5 = 4(=2G,G,, + FiF |, — F,F}) (3.37)
G, +2nG, —8G,, = 4(~G}F,, — F,G 1), (3.38)
G, +2nGl, —8G,, = 4(F.G,, — GiF.1) (3.39)

G,2,3 + 2"G;3 - 8623 24(2F(’)Gu + F(;Glz +2GOF11 - G(’)Fn - 2G(,)F12 - FOG;I - Fociz) >

(3.40)
G, +2nG), —8G,, =4(F,G, +2GFy, - F,G,), (3.41)
Gs +2nG o — 8G,s = 4(F\G,, — GF,,), (3.42)
G +2nGh —8G,, = 4(2G,F 5, —2G)F,5) , (3.43)
G, +2nG,, —8G,, = —4G F,;, (3.44)

and are subject to the boundary conditions

F,;(0)=0, F,(0)=0, lim F,(n)=0; i=1-8, (3.45)
G,(0)=0, lim G,(n)=0; j=1-7. (3.46)

The complexity of the right hand sides of the governing equations increases very rapidly.
Equations (3.30)—(3.44) were solved numerically using the Thomas algorithm. The numeri-
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cal mesh size was taken to be # =0.01 to ensure a good accuracy. The boundary conditions
at infinity were approximately satisfied at » = 6 and later verified by examining the solution.

4. Results

The time series solution determines the initial stages of the boundary-layer flow past an
impulsively started translating and spinning rotational symmetric body of general shape. The
stream function and the swirl velocity series are in terms of the local body radius r(x) and the
axial boundary layer edge velocity U,(x). An application of the present results requires the
shape of the body and the potential flow solutions to be known.

The friction drag on the body may be written as

-
D,=2m f() r*r, cos a dx*, (4.1)

where /* is the length of the body measured along the surface and « is the angle local axial
tangent line makes with the symmetry axis. The moment applied to the body to maintain the
rotation is

s
M= -ZWL re’r, o dx* . (4.2)

The wall shear stresses are defined by

ou* *
T -

0w
wx I'L ay*

> TWG_I'L ay*

(4.3)

y*=0 yr=0"

where p is the viscosity of the fluid. Substitution of Egs (4.3) and the use of the boundary
layer variables reduce the friction drag and the moinent to

B UL (' 8°F

Dy=2mp == | rU, —3|  cosadx, (4.4)
_ U,L* f[ 539G

M= 2muw 0" an |z dx, (4.5)

where /= [* /L. Determination of the friction drag and the moment requires the local body
radius and the boundary layer edge velocity to be known. Here the results are applied to an
impulsively started translating and spinning sphere of radius R for which

. 3. .
L=R, =, r=sinx, Ue=§smx, cosa =sinx . (4.6)
Friction drag and moment coefficients for a sphere are defined as
Df M

C,=—5—5, C,=—ss, 7
I 2mpUZR® M 2mpULR’ (4.7)
¢ PYo

where p is the fluid density. Substitution of Eqs (4.4), (4.5), (3.1), (3.2) and (4.6) into Eqgs
(4.7) yields
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VRe C, = \—‘}t {F;;(O) + 596 tz[FZI(O) —4F},(0) + F,(0) + F5,(0) — 4F},(0)
+ g o (F5(0) — 4F5,(0) + Fgg(O))] +e } : (4.8)
VRe C,, = — % {% G4(0) + % tZ[G;I(O) —4G1,(0) + G3;(0) + G1,(0) — 4G }(0)
+ g (G (0) - 4G;7(0))] +-- } . (4.9)

The slopes of the leading order tangential and swirl velocity functions on the surface are
F3(0)=2/Vw and G;(0)= —2/V#. The slopes of the tangential velocity functions Fi(0)
(i=1,2; j=1-8) and the swirl velocity functions G, (0) (i =1,2; k =1~7) are given in
Tables 1 and 2 respectively. Setting =0 in Eq. (4.8) gives the friction drag coefficient for a
translating sphere and matches the series given by Dennis and Walker [2] exactly. Temporal
variations of the friction drag and moment coefficients for a translating and spinning sphere
are shown in Figs 2 and 3 respectively. It may be observed that the rotation reduces the
friction drag and the moment naturally increases with the spin rate. Singular behaviour near
t =0 is due to the impulsive start of the motion.

Separation starts first when 7,, vanishes at the rear stagnation point of the sphere where
x = m. The use of the boundary layer variables in Eq. (4.3) gives this condition as

i
anZ n=0

and upon substitution of Eqs (3.1) and (4.6), separation time ¢, may be solved from

1 3 " " 4 " 9 " "
Fi0) = 3 4[FL0) + Fi0) + 3 0 FW(O)+ 5 2{FL0) + F4(0)

+ F3,(0) + g w’[F3,(0) + F’Z’S(O)]} =0. (4.10)
Table 1. Slopes of the tangential velocity functions, F/(0)
J
i 1 2 3 4 5 6 7 8
1 1.607278 0.170581 0.820061
2 —0.248106 | —0.067423 | —0.032463 | 0.035587 —0.022623 | —0.249122 | —0.008566 | —0.116089
Table 2. Slopes of the swirl velocity functions, G,',.(O)
J
i 1 2 3 5 6 7
1 —0.170581 —0.787217
2 —0.080817 —0.045232 —0.292481 0.064595 0.099243 ~0.188473 —0.027467




Fig. 2. Temporal variation of the friction drag coefficient for a translating and spinning sphere.
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Separation times for various values of w are given in Table 3. The results show that
increasing the spin rate causes a sooner onset of separation.
The location of separation at any instant of time may be determined from

o°F

>

an”

n=0

Similarly, with the substitution of Eqs (3.1) and (4.6), the location of separation for a
translating and spinning sphere may be determined from

Table 3. Variation of the separation time with the rotation rate

[

0

1 2

3

4

5

6

9

10

!

$

0.3915

0.3216 | 0.2136

0.1390

0.0939

0.0665

0.0490

0.0374

0.0294

0.0237

0.0194
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Fig. 3. Temporal variation of the moment coefficient for a translating and spinning sphere.

" 3 ” n 4 " 9 " 1 "
Fi(0) + 5 tcos x[F“(O) +FL0)+ 5 w2F13(0)] + 27 tz{coszx[FZI(O) + F35(0) + F3,(0)]
n 4 v " . "

— sin’x[F,(0) + F5,(0)] + 9 w’[cos’x(Fig(0) + Fag(0)) — 51n2xF27(0)]} =0. (411

Equation (4.11) is solved for x for given values of time and rotation rate. Angle of
separation ¢, measured counterclockwise from the rear stagnation point, is then obtained as
¢ = x — . Temporal variation of the angle of separation is shown in Fig. 4. The point of
separation advances upstream initially very fast with a rate increasing with the spin rate.
However, the advancement rate is drastically reduced with time and the separation angle
increases toward its steady state value slowly. For a given time, the angle of separation is
larger for a higher spin rate. This is in agreement with the results of Hoskin [7].
Development of the flow field is illustrated in Fig. 5 for w =2. Figure 5a shows the
streamlines at t=0.2, shortly before separation, for this case. The next stage for which
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Fig. 4. Temporal variation of the separation angle for a translating and spinning sphere.

t = 0.3 is shown in Fig. 5b where the flow has a narrow zone of separation near the surface.
Figure Sc shows the streamlines at ¢ = 0.4. Separated region has grown further at this stage.

Development of the flow field for w = 6 is illustrated in Fig. 6. In this case, the rate of
rotation is high enough to cause an early separation. The streamlines at # = (0.1 are shown in
Fig. 6a. At this stage, separation is confined to a relatively narrow region. The next stage for
which ¢ = 0.25 is shown in Fig. 6b where the separated region has grown considerably. The
separated region continues to grow intensively and the flow field at r = 0.4 is shown in Fig.
6c.

The time series solution obtained in the present paper for an impulsively started
translating and spinning rotational symmetric body of general shape is limited to the early
stages of the boundary layer flow. The time series were truncated after the terms of O(r°)
and the neglected terms are of O(f') and O(f'w®). The general results applied to an
impulsively started translating and spinning sphere were pushed up to ¢ = 0.4. The functions
in the streamwise and circumferential velocity series gradually decrease in magnitude as the
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e

0

W=0.5
W=0.3
\W=0.15
\WY=0.05
W=0.005

=0

We0.5
W=0.3
WY=0.15
V=0.05
W=0.005

Fig. 5. Temporal development of the flow field for @ =2 at (a) t =0.2, (b) £ = 0.3 (enclosed streamline is —0.0002)

and (c) t = 0.4 (enclosed streamlines from the center are —0.004 and —0.002).

order of the functions increases. The functions related to ¢* and t’w’® are O(10™') and
O(107%) at most. Thus the solutions at ¢ = 0.4 for & =< 10 are at worst one digit accurate and
the accuracy improves to two digits for small w. For example, in the case of a translating
sphere for which « =0, the separation time was obtained with two digit accuracy as
¢, =0.3915. Accuracy of the solutions naturally increases as t decreases. The solutions are
three digit accurate for ¢=<0.2 and two digit accurate for t+=<0.4 provided « = O(1).
Numerical integration of the boundary layer equations is necessary to extend the solutions to
larger values of time. A particular body shape may require a different numerical analysis and

treatment.
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Fig. 6. Temporal development of the flow field for w = 6 at (a) 1 =0.1 (enclosed streamline is —0.002), (b) 1=0.25
(enclosed streamlines from the center are ~0.1, —0.08, —0.05 and —0.02) and (c) = 0.4 (enclosed streamlines from

the center are —0.33, —0.28, —0.2 and —0.1).

References

1. E. Boltze, Grenzschichten an Rotationskérpern in Fliissigkeiten mit Kleiner Reibung. Thesis, Gottingen

(1908).

2. S.R.D. Dennis and J.D.A. Walker, The initial flow past an impulsively started sphere at high Reynolds

numbers. Journal of Engineering Mathematics 5 (1971) 263-278.

3. S.R.D. Dennis and J.D.A. Walker, Numerical solutions for time-dependent flow past an impulsively started

sphere. The Physics of Fluids 15 (1972) 517-525.

4. C.R. Hlingworth, The laminar boundary layer of a rotating body of revolution. Phil. Mag. 44 (1953) 351-389.
5. S.T. Chu and A.N. Tifford, The compressible laminar boundary layer on a rotating body of revolution. JAS 21

(1954) 345-346.



428 M. Cem Ece

6.

11.

12.
13.

H. Schlichting, Die Laminare Strémung um Einen Axial Angestromten Rotierenden Drehkorper. Ing. Arch. 21
(1953) 227-244.

. N.E. Hoskin, The laminar boundary layer on a rotating sphere. In: W. Tollmien and H. Gértler (eds), Fifty

Years of Boundary Layer Research. Braunschweig (1955) pp. 127-131.

. L. Howarth, The boundary layer in three-dimensional flow, Part 1. Phil. Mag. 42 (1951) 239-243.
. O. Sawatzki, Stromungsfeld um Eine Rotierende Kugel. Acta Mech. 9 (1970) 159-214.
. P. Dumarque, G. Laghoviter and M. Daguenet, Determination des lignes de courant parietales sur un corps de

revolution tournant autour de son axe dans un fluide au repos. ZAMP 26 (1975) 325-336.

S. Lutander and A. Rydberg, Experimentelle Untersuchungen iber den Luftwiderstand bei Eine um Eine mit
der Windrichtung Parallel Achse Rotierenden Kugel. Phys. Z. 36 (1935) 552-558.

W. Mangler, Ber. Aerodyn. Versuchsanst. Goett. Rep. 45/A/17 (1945).

M.C. Ece, T.L. Doligalski and J.D.A. Walker, The boundary layer on an impulsively started rotating and
translating cylinder. Physics of Fluids 27 (1984) 1077-1089.



